If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20n^2-41n+20=0
a = 20; b = -41; c = +20;
Δ = b2-4ac
Δ = -412-4·20·20
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-9}{2*20}=\frac{32}{40} =4/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+9}{2*20}=\frac{50}{40} =1+1/4 $
| 9b+5b-13b+3=15 | | w/9=-57 | | 3/4 =−6e−3/5 | | -30=-10v | | 9x+4=-3x+10 | | -5+2x=x+9 | | 3(3n-7=4(n+1) | | 2x+3x+10+3x+10=180 | | 18x38xx=(10.3-x)(5x-0.3) | | x^2+2=x+5 | | x+x+3+x+6=162 | | x+8=4(5x-6) | | 5(x-1)=(2x-3) | | 15p-5p+(-18p)=8 | | x+39=5320 | | 3x+5x(1+2x)=5x-11 | | 6-0.5x=-0.5x+6 | | 46q=24 | | -18d-(-11d)+8d+(-4d)=9 | | .9t=18 | | 36a=18 | | 1/3(x-6)=23 | | w^-10w+25=0 | | n/13=4;=52 | | 2x+46=276 | | 1/5-b=2 | | w+15=78 | | -1=5p+3p-8=p | | 4w+11=83 | | 72(9-9/8x)-9x(9-9/8x)-4(9-9/8x)^2=0 | | −72t−2=−4−7t | | 2(3.14)r^2=652783 |